Computing Subject Knowledge Audit
Use this needs analysis to help self-assess and track your computing subject knowledge.

Computing subject knowledge audit				
	Topic Area
	Current Level of Understanding
3 = I could explain this to others
2 = I understand this concept
1 = I have little or no understanding of this concept

	1. Computational Thinking
Define, explain and use these concepts with examples:
Algorithm
	

	Program:
	

	Decomposition:
	

	Abstraction:
	

	Generalisation:
	

	Logical reasoning:
	

	Pseudocode:
	

	Flowcharts:
	

	2. Algorithms, programming and data structures
Define and explain these concepts with examples.
	

	Selection:
	

	Repetition:
	

	Procedures and Functions:
	

	Parameters:
	

	Lists and Arrays:
	

	Data types:
	

	Variables:
	

	Constants:
	

	Operators: mathematical, string, relational and logical
	

	Variable Scope:
	

	Nested loops:
	

	File handling:
	

	Libraries:
	

	2.1 Common Algorithms
Explain the how these algorithms work in English and pseudocode:
Insertion Sort
	

	Selection Sort
	

	Bubble Sort
	

	Quick Sort
	

	Merge Sort
	

	
Linear Search
	

	Binary Search
	

	
Explain and how a programmer might choose an algorithm for a given task or dataset.
Explain how the performance or efficiency of algorithms can be described and evaluated e.g. using Big O notation.
	

	2.2 Debugging Techniques
Explain and use a range of debugging techniques for algorithms and programs including:
Commenting
	

	Stepping
	

	Breakpoints
	

	Watching variables
	

	Trace dumps and tables
	

	Exception handling
	

	Interpreting error messages
	

	Understanding the difference between syntax, run-time and logical errors.
	

	Selective code execution
	

	Functional Testing (especially boundary conditions)
	

	2.3 Error Detection and Testing
Explain types of errors in data caused by user input or communication failure. Explain error detection techniques such as:
Validation
	

	Verification
	

	Parity bits
	

	Checksums
	

	Repetition codes
	

	Explain strategies for testing programs and algorithms, including:
Logical testing (White Box)
	

	Functional testing (Black Box)
	

	Integration testing
	

	End-user testing
	

		
Derive functional test data for a program or algorithm using equivalence classes.
	

	Construct a trace table for an algorithm or program
	

	2.4 System Development Lifecycles
Describe and explain a range of systems development approaches for example:
Cyclical, waterfall, spiral, prototyping.
	

	3 Computer Architecture & Data Storage
Define, explain and use these concepts:
Computer
	

	CPU
	

	ALU
	

	Control Unit
	

	Memory
	

	RAM
	

	ROM
	

	Bit
	

	Byte
	

	Secondary Storage
	

	Von Neumann architecture
	

	Operating System
	

	Moore’s Law
	

	Data
	

	Information
	

	3.1 Operating Systems
Explain the tasks carried out by a typical operating system.
Compare the characteristics of operating systems e.g. Windows and Android in terms of high level functionality.

	

	3.2 Physical Architecture
Explain the role of transistors in computers and how they can be connected to create logic gates.
Explain how logic gates can be combined to perform useful tasks.
Explain Boolean logic and derive logic tables for common logic gates.
Explain how the use of transistors and logic gates gives rise to binary computation.
	

	3.3 Abstraction: “Levels” of programming languages
Explain the difference between source code and object code (also known as machine code or executable code).
Explain the concept of “High Level” and “Low Level” programming languages and the differences between levels.
Explain the role of compilers and interpreters and how they differ.
Explain why executable code cannot usually be converted back into source code and why assembly language is an exception to this.
Describe the fetch-execute cycle.
Explain how machine code and assembly languages work and the relationship between them using a simplified example such as Little Man Computer.
Write and interpret simple programs using a low level language such as assembly code/Little Man Computer.

	

	3.4 Number Systems / Data Representation
Explain how the binary number system can represent:
unsigned integers
	

	signed integers
	

	long integers
	

	fractions
	

	characters
	

	bitmaps
	

	audio data
	

	Explain analogue-digital conversion for example how sound sampling works and the parameters which determine the fidelity of such encoding e.g. frequency and bitrate.
	

	3.4 Number Systems / Data Representation (cont)
Convert between binary, decimal and hexadecimal values.
	

	Explain the uses of hexadecimal as an intermediate number system.
	

	Perform simple binary mathematics and explain two’s complement
	

	Explain the limitations of using binary representations - eg overflow errors, rounding errors, and fractional numbers.
	

	Explain how the same information can be encoded in different ways e.g. bitmap and vector graphics or sound waveforms and MIDI data.
	

	3.5 Data Compression
Explain common methods for data compression in simple terms e.g.
Audio compression
Video compression
Zip compression
Image compression
Explain the difference between “lossless” and “lossy” compression.
	

	4 Networks and the Internet
Define and explain:
World Wide Web
	

	Internet
	

	URL
	

	Browser
	

	Data packets
	

	Protocols
	

	Client- server models
	

	MAC address
	

	IP address
	

	Domain names
	

	Cookies
	

	Routing
	

	Web API
	

	Hyperlink
	

	HTML
	

	4 Networks and the Internet (cont)
Describe simple network topologies and identify their advantages and disadvantages.
Explain in broad terms how data are transported in networks including the Internet.
	

	Explain a search engine strategy/algorithm to construct its page index and ranking
Explain strategies to construct search terms which improve pages returned in common search engines.
	

	5 Applications of Computing
Have competent skills and knowledge of a range of hardware and software including:
Office software
Collaboration and social networking software
Web design software
Image manipulation software
Video production software
Audio production software
Physical monitoring and control applications
	

	5.1 Models and Simulations
In the context of computer models and simulations.
Define the terms:
Model
	

	Simulation
	

	Rule
	

	Variable
	

	Assumption
	

	Explain with examples the relative advantages and disadvantages of models and simulations.
	

	5.2 Relational Database Systems
Explain the concepts of database files, records and fields.
	

	Explain how information can be structured in a relational database by using Top down (Entity Relationship Diagram) and bottom up (Normalisation) approaches.
Explain the use of primary and foreign keys
	

	Explain the terms data consistency, data redundancy, data integrity and data independence.

	

	Interpret and use simple SQL operations.
	

	6 Impact of Computing – Safety, Legal and Socio-economic issues
Define and explain:
Phishing
	

	Viruses
	

	Trojan Horse
	

	Malware
	

	Identity Theft
	

	Firewall
	

	Filtering Software (Blacklist and whitelist)
	

	Encryption
	

	Cyber Bullying
	

	Digital Footprint
	

	6.1 E-Safety and Security
Identify threats to personal and professional safety online and explain e-safety steps to manage any risk.
	

	Explain steps to maintain data security, integrity and privacy.
	

	6.2 Legislation
Explain legislation directly related to Computing including the Data Protection Act, Computer Misuse Act and relevant copyright legislation (including the use of creative commons licenses).
	

	6.3 Impact of Computing
Identify and consider social and ethical issues raised by the role of computers for individuals, organisations and society.
Identify real life computing contexts which exemplify the possibilities of technology, and provide children with a wide range of career role models related to the subject.
	

